Performance Evaluation in Networks

Simulation & Random generation

イロト イヨト イヨト イヨト

Ingredients Objectives Randomness

Study of a system performances

Investigation tools :

- Mathematical/numerical analysis of models
- Simulation of the system (math model, scale model)
- Experiments/measures on real system

(4月) (4日) (4日)

Ingredients Objectives Randomness

Simulation

Simulation

Imitation of a real system, based on a model of the reality which picks some key features of the structure and the dynamics of the system

Numerical/computer/in silico simulation

Experiments where the real system is replaced by a computer program implementing a mathematical model of the system.

イロト イポト イヨト イヨト

Ingredients Objectives Randomness

Ingredients of simulation

- Models : deterministic or not, probabilistic or not, states and time discrete or continuous, various specification languages.
- **Software :** many softwares commercial or not, various programming languages.
- Hardware : from general monoprocessor to high performance computing with super-computers or clusters.

A = A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ingredients Objectives Randomness

Advantages of simulation

In the framework of performance evaluation :

- Good alternative to study systems complex to observe or analyse.
- Often cheaper than experiments on real systems.
- Possibility to accelerate time : simulation time vs real time.
- Experimentation under control, possibility to play easily with model parameters

イロト イポト イヨト イヨト

Ingredients Objectives Randomness

Risks of simulation

In the framework of performance evaluation :

- Bugs in the simulator.
- Bugs in the model
- Errors/difficulties to interpret the results of simulation

Relevance of results sometimes guaranteed by theorems : e.g. a.s. convergence of empirical means towards parameters of the asymptotic behavior

Definition Utilisation Conception

Random Number Generators

Question : how to generate numbers (boolean, integers, rationals, reals) following fixed laws and using a fixed source of randomness?

Postulate (random generator)

We have a function Random with values in [0,1] such that

- One call to Random returns a r.v. of uniform law over [0,1].
- **2** Successive calls to Random return independent r.v.

Remark : Random can take any value in [0,1] but $\forall a \in [0,1]$, $\mathbb{P}[\text{Random} = a] = 0$. May seem difficult to achieve in practice, but ways to approach this.

Definition Utilisation Conception

Simulate a probability law via Random

Definition

An algo simulates a proba law when one of the variables outputs follow this law, assuming that the successive calls to the random generator are a sequence of i.i.d. r.v. of uniform law over [0, 1].

Proposition (Simulation of the uniform law over $[0,1]^d$)

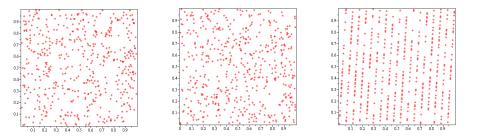
For all $d \in \mathbb{N}^*$, let $(\text{Rand}_1, \dots, \text{Rand}_d)$ d be the successive calls to Random, then for any box $D =]a_1, b_1] \times \dots \times]a_d, b_d]$, $0 \le a_i < b_i \le 1$, $i = 1, \dots, d$, we have :

$$\mathbb{P}[(\text{Rand}_1,\ldots,\text{Rand}_d)\in D] = (b_1 - a_1)\cdots(b_d - a_d)$$

Definition Utilisation Conception

Randomness at first sight

Question for 500 pts : which one is i.i.d. uniform in $[0,1]^2$?

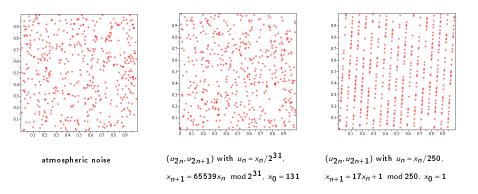


< A > < 3

Definition Utilisation Conception

Randomness at first sight

Question for 500 pts : which one is i.i.d. uniform in $[0,1]^2$?



-

First examples

Vocabulary : simuler une loi / échantillonner selon une loi / random sampling

Utilisation

Example 1 : uniform law over [a, b], $a, b \in \mathbb{R}$.

Example 2 : non biaised dice with 6 faces.

First examples

Vocabulary : simuler une loi / échantillonner selon une loi / random sampling

Example 1 : uniform law over [a, b], $a, b \in \mathbb{R}$.

 $X \leftarrow (b-a) \times \text{Random} + a$

Utilisation

Example 2 : non biaised dice with 6 faces.

First examples

Vocabulary : simuler une loi / échantillonner selon une loi / random sampling

Example 1 : uniform law over [a, b], $a, b \in \mathbb{R}$.

 $X \leftarrow (b-a) \times \text{Random} + a$

Utilisation

Example 2 : non biaised dice with 6 faces.

 $X \leftarrow [6 \times \texttt{Random}]$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition Utilisation Conception

Sampling by inversion (I)

Definition (pseudo-inverse of F)

 $\forall u \in \mathbb{R}, F^{(-1)}(u) \stackrel{\text{def}}{=} \inf\{x \in \mathbb{R} | F(x) \ge u\} \ (=F^{-1}(u) \text{ if } F \text{ cont strict} \nearrow).$

Proposition

Let X real r.v. with cumulative distribution F and U of uniform law over [0,1], then $\tilde{X} = F^{(-1)}(U)$ follows the law of X.

Algorithm (sampling by inversion)

 $X \leftarrow F^{(-1)}(\texttt{Random})$

Use : useful when one has an explicit expression and/or a simple computation of $F^{(-1)}$.

Definition Utilisation Conception

Sampling by inversion (II)

Exemple 1 : simulate the law exp $F(x) = (1 - e^{-\lambda x})\mathbb{1}_{\mathbb{R}_+}(x)$

Exemple 2 : simulate a discrete law with values in $\{x_1 < x_2 < x_3 < ...\}$ a finite or countable sets.

(日) (周) (日) (日) (日)

Definition Utilisation Conception

Sampling by inversion (II)

Exemple 1: simulate the law exp $F(x) = (1 - e^{-\lambda x})\mathbb{1}_{\mathbb{R}_+}(x)$ **Formula**: $\forall u \in]0,1]$, $F^{-1}(u) = -\ln(1-u)/\lambda$ **Algo**: $X \leftarrow -\ln(\text{Random})/\lambda$ (not necessary to compute $-\ln(1-\text{Random})/\lambda$ since Random and 1-Random have the same law)

Exemple 2 : simulate a discrete law with values in $\{x_1 < x_2 < x_3 < ...\}$ a finite or countable sets.

《曰》 《圖》 《臣》 《臣》

Definition Utilisation Conception

Sampling by inversion (II)

Exemple 1: simulate the law exp $F(x) = (1 - e^{-\lambda x})\mathbb{1}_{\mathbb{R}_+}(x)$ Formula : $\forall u \in]0,1]$, $F^{-1}(u) = -\ln(1-u)/\lambda$ Algo : $X \leftarrow -\ln(\text{Random})/\lambda$ (not necessary to compute $-\ln(1-\text{Random})/\lambda$ since Random and 1-Random have the same law)

Exemple 2 : simulate a discrete law with values in $\{x_1 < x_2 < x_3 < ...\}$ a finite or countable sets.

Formulas :
$$\forall x \in \mathbb{R}$$
, $F(x) = \begin{cases} 0 & \text{si } x < x_i \\ p_1 + \dots + p_i & \text{si } x_i \le x < x_{i+1} \end{cases}$
 $\forall u \in]0, 1], F^{-1}(u) = \{x_i | F_{i-1} < u \le F_i\} \text{ où } F_i = p_1 + \dots + p_i \end{cases}$
Algo :
$$i \leftarrow 1, \ choix \leftarrow \text{Random}, \\ \text{repeat } (choix > F_i) \text{ until } i \leftarrow i+1, \\ X \leftarrow x_i \end{cases}$$

Definition Utilisation Conception

Sampling by inversion (III)

Example 2bis : Poisson law of parameter λ **Algo** :

$$P \leftarrow e^{-\lambda}, F \leftarrow P, X \leftarrow 0, \text{ choix} \leftarrow \text{Random},$$

while $(choix > F)$ do { $X \leftarrow X + 1, P \leftarrow \lambda P/X, F \leftarrow F + P$ }

Exemple 2ter : Discrete law over *n* values

precompute F_i , $1 \le i \le n$ in a sorted array,

Algo: find index *i* such that $F_{i-1} < \text{Random} \le F_i$ by dichotomy

space	precomputation time	sampling time	calls to Random
O(1)	0	<i>O</i> (<i>n</i>)	1
O(n)	<i>O</i> (<i>n</i>)	$O(\log(n))$	1
<i>O</i> (?)	O(?)	<i>O</i> (1)	1

(日) (周) (日) (日) (日)

Sampling by conditional rejection (1)

Ingredients :

- Algo \mathscr{A} probabilistic (with calls to Random) where output variable $X = v.a. \Omega \rightarrow \mathbb{R}$.
- Event $F \subseteq \Omega$ of probability $\mathbb{P}(F) > 0$.
- Algo $\widetilde{\mathscr{A}}$: repeat \mathscr{A} until F occurs/realized.

Proposition

- When *A* stop, *X* the output variable of *A* follows the law of X conditioned by F, i.e. with cumulative distribution P(X ≤ x|F) = P({X ≤ x} ∩ F)/P(F).
- **2** Number of loop executions in $\widetilde{\mathcal{A}}$ follows a geometrical law of parameter $\mathbb{P}(F)$.

イロト イポト イヨト イヨト

Definition Utilisation Conception

Sampling by conditional rejection (II)

Example1 : let $\alpha \in]0,1[$, repeat $X \leftarrow \text{Random until } X \leq \alpha$.

Example2 : let *D* and *D'* two measurable areas in \mathbb{R}^d such that $D \subseteq D'$ et $0 < vol(D) \le vol(D') < +\infty$, suppose that you know how to sample the uniform law in *D'*.

Algo : repeat draw a random point X in D' until $X \in D$.

Sampling by conditional rejection (II)

Example1 : let $\alpha \in]0,1[$, repeat $X \leftarrow \text{Random until } X \leq \alpha$.

 $F_{\tilde{X}}(x) = \mathbb{P}(X \le x | X \le \alpha) = \begin{cases} 0 & \text{si } x < 0 \\ x/\alpha & \text{si } x \in [0, \alpha] \\ 1 & \text{si } x > \alpha \end{cases}$

Densité $f_{\widetilde{X}}(x) = \frac{1}{\alpha} \mathbb{1}_{[0,\alpha]}(x)$ càd uniforme sur $[0,\alpha]$

Comparer avec l'algo : $X \leftarrow \alpha \times \text{Random}$.

Example2 : let *D* and *D'* two measurable areas in \mathbb{R}^d such that $D \subseteq D'$ et $0 < vol(D) \le vol(D') < +\infty$, suppose that you know how to sample the uniform law in *D'*.

Algo : repeat draw a random point X in D' until $X \in D$.

(日) (周) (日) (日) (日)

Sampling by conditional rejection (III)

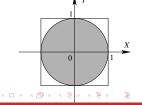
Example2 : repeat draw a random point X in D' until $X \in D$.

Proposition

If $D \subseteq D'$ measurable areas in \mathbb{R}^d où $0 < vol(D) \le vol(D') < \infty$, and X r.v. in \mathbb{R}^d of uniform law over D', then the conditional law of X given $X \in D$ is the uniform law over D.

Time complexity : r.v. with geometric law of $\frac{vol(D)}{vol(D')} \rightarrow$ choose D' close to D and where uniform law is simple to simulate, e.g. union of disjoint boxes.

Uniform law over the unit disk $D = \{(x,y)|x^2 + y^2 \le 1\}$ via $D' = [-1,1]^2$ Repeat $X \leftarrow 2 \times \text{Random} - 1$ $Y \leftarrow 2 \times \text{Random} - 1$ until $X^2 + Y^2 \le 1$



Sampling by conditional rejection (IV)

Example 3 : Rejection method by von Neumann (1951)

Proposition

Let f,g proba densities over \mathbb{R}^d with constant c such that $\forall x \in \mathbb{R}^d$, $f(x) \leq cg(x)$, and X r.v. over \mathbb{R}^d of density g, and U real r.v. of uniform law over [0,1], independent of X, then the conditional law of X given "cUg(X) < f(X) has density f.

Sampling by decomposition (I)

Ingredients : f proba density over \mathbb{R}^d which can be written $f = \sum_{n \in \mathbb{N}} p_n f_n$ where $(p_n)_{n \in \mathbb{N}}$ mass over \mathbb{N} and $\forall n \in \mathbb{N}$, f_n density over \mathbb{R}^d .

Proposition

Let $(X_n)_{n \in \mathbb{N}}$ family of r.v. over \mathbb{R}^d with respective densities f_n , and N r.v. over \mathbb{N} with mass $(p_n)_{n \in \mathbb{N}}$ where N independent from $(X_n)_{n \in \mathbb{N}}$, then $\widetilde{X} = X_N$ has density f.

Algorithm

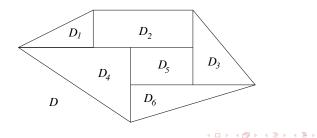
Draw $n \in \mathbb{N}$ with proba $(p_n)_{n \in \mathbb{N}}$, then draw $X \in \mathbb{R}^d$ with density f_n .

(日) (周) (日) (日) (日)

Utilisation Conception

Sapling by decomposition (II)

Example : Uniforme law over $D = \bigcup_{i=1}^n D_i$ disjoint and measurable in $\subseteq \mathbb{R}^d$



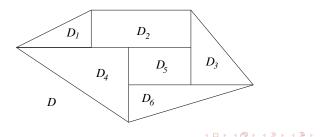
Utilisation Conception

Sapling by decomposition (II)

Example : Uniforme law over $D = \bigcup_{i=1}^{n} D_i$ disjoint and measurable in $\subseteq \mathbb{R}^d$ Formula :

$$\frac{1}{\operatorname{vol}(D)}\mathbb{1}_D(x) = \sum_{i=1}^n \frac{\operatorname{vol}(D_i)}{\operatorname{vol}(D)} \left[\frac{1}{\operatorname{vol}(D_i)}\mathbb{1}_{D_i}(x)\right]$$

Algo : draw *i* avec proba $\frac{vol(D_i)}{vol(D)}$, then draw X at random over D_i .



э

Simulation Defin Random generators Utilis Discrete event simulation Conc

Definition Utilisation Conception

Sampling by change of variables (I)

Reminder : let φ bijection $(x_1, x_2) \mapsto (y_1, y_2)$ between $D \subseteq \mathbb{R}^2$ and $D' \subseteq \mathbb{R}^2$, with (abusive) notations $y_1 = y_1(x_1, x_2), y_2 = y_2(x_1, x_2)$ for φ , and $x_1 = x_1(y_1, y_2), x_2 = x_2(y_1, y_2)$ for φ^{-1} . Assuming the existence of partial deriv, one define the Jacobien of φ^{-1} as :

$$J_{\varphi^{-1}}(y_1, y_2) = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_2}{\partial y_1} \\ \frac{\partial x_1}{\partial y_2} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \frac{\partial x_1}{\partial y_1} \frac{\partial x_2}{\partial y_2} - \frac{\partial x_1}{\partial y_2} \frac{\partial x_2}{\partial y_1}$$

Theorem (integration & change of variables)

Let $f : \mathbb{R}^2 \to \mathbb{R}$ integrable, $\varphi : D \to D'$ bijection and $A \subseteq \mathbb{R}^2$, then

$$\iint_{A} f(x_1, x_2) dx_1 dx_2 = \iint_{\varphi(A)} f(x_1(y_1, y_2), x_2(y_1, y_2)) |J_{\varphi^{-1}}(y_1, y_2)| dy_1 dy_2$$

Definition Utilisation Conception

Sampling by change of variables (II)

Corollary

Let (X_1, X_2) r.v. of continuous joint distrib f, of support $D \in \mathbb{R}^2$, and φ bijection $D \to D'$, then $(Y_1, Y_2) = \varphi((X_1, X_2))$ has a continous joint distrib : $f_{Y_1, Y_2}(y_1, y_2) = \begin{cases} f(x_1(y_1, y_2), x_2(y_1, y_2)) | J_{\varphi^{-1}}(y_1, y_2) | & si(y_1, y_2) \in D'\\ 0 & sinon \end{cases}$

Example : Box-Muller algorithm (1958) $\begin{cases}
R \leftarrow \sqrt{-2\ln(\text{Random})}, \ \Theta \leftarrow 2\pi \times \text{Random} \\
X \leftarrow R \cos\Theta, \ Y \leftarrow R \sin\Theta
\end{cases}$

イロト イポト イヨト イヨト

Definition Utilisation Conception

Sampling by change of variables (II)

Corollary

Let (X_1, X_2) r.v. of continuous joint distrib f, of support $D \in \mathbb{R}^2$, and φ bijection $D \to D'$, then $(Y_1, Y_2) = \varphi((X_1, X_2))$ has a continous joint distrib : $f_{Y_1, Y_2}(y_1, y_2) = \begin{cases} f(x_1(y_1, y_2), x_2(y_1, y_2)) | J_{\varphi^{-1}}(y_1, y_2) | & si(y_1, y_2) \in D'\\ 0 & sinon \end{cases}$

Example : Box-Muller algorithm (1958) $\begin{cases}
R \leftarrow \sqrt{-2\ln(\text{Random})}, \ \Theta \leftarrow 2\pi \times \text{Random} \\
X \leftarrow R \cos\Theta, \ Y \leftarrow R \sin\Theta
\end{cases}$

 $\Rightarrow \Theta \text{ of uniform law over } [0,2\pi], \text{ indep from } R \text{ of density}$ $re^{-\frac{r^2}{2}} \mathbb{I}_{\mathbb{R}_+}(r) \Rightarrow X \text{ et } Y \text{ are independent, of normal law } \mathcal{N}(0,1)$

イロト イポト イヨト イヨト

э

Definition Utilisation Conception

Generators : true randomness vs pseudo-randomness

Question : how to implement Random?

(日) (周) (日) (日) (日)

Definition Utilisation Conception

Generators : true randomness vs pseudo-randomness

Question : how to implement Random?

 \rightarrow how to generate sequences of random numbers/bits

(日) (周) (日) (日) (日)

Generators : true randomness vs pseudo-randomness

Question : how to implement Random?

 \rightarrow how to generate sequences of random numbers/bits

Pseudo-random generator

Deterministic algo generating a sequence of numbers, with some parameters to fix, often defined as x(n+1) = f(x(n)) with a "seed" x(0), predictable e.g. if knowledge of initial parameters.

"true" random generator

Sequence obtained by physical measures of phenomena with intrinsec probabilities (e.g. quantum effects) or complex behaviors (e.g. chaotic).

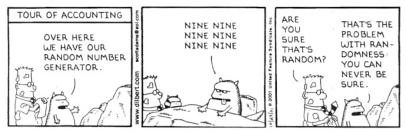
(日) (周) (日) (日) (日)

Definition Utilisation Conception

Random sequences

Question : what is a truly random sequence of numbers? how to evaluate randomness of a sequence of numbers?

DILBERT By Scott Adams



・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Definition Utilisation Conception

Random sequences : statistical test

Definition (*d*-uniform real sequences)

A sequence $(x_n)_{n \in \mathbb{N}}$ with values in [0, 1] is *d*-uniform if for any box $D =]a_1, b_1] \times \cdots \times]a_d, b_d]$, we have :

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{I}_D((x_{di}, x_{di+1}, \dots, x_{d(i+1)-1})) = (b_1 - a_1) \cdots (b_d - a_d)$$

Definition (*d*-uniform boolean sequences)

A sequence $(x_n)_{n \in \mathbb{N}}$ with values in $\{0, 1\}$ is *d*-uniforme if for any pattern $(\varepsilon_1, \ldots, \varepsilon_d) \in \{0, 1\}^d$, we have :

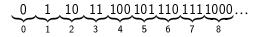
$$\lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1}_{(\varepsilon_1, \dots, \varepsilon_d)} ((x_{di}, x_{di+1}, \dots, x_{d(i+1)-1})) = \frac{1}{2^d}$$

Definition Utilisation Conception

Random sequences : statistical tests

Exemple 1 :	
	000000000000000000000000
Exemple 2 :	
·	010101010101010101010101
Exemple 3 :	
•	0001101100011011000110

Exemple 4 : Champernowne sequence(1933)



・ロト ・ 同ト ・ ヨト ・ ヨト

Simulation Date Random generators Ut Discrete event simulation Co

Definition Utilisation Conception

Random sequences : statistical tests

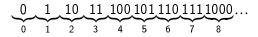
- Exemple 2 :

0101010101010101010101...

Exemple 3 :

0001101100011011000110...

Exemple 4 : Champernowne sequence(1933)



イロト イポト イヨト イヨト

Definition Utilisation Conception

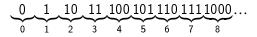
Random sequences : statistical tests

Exemple 2 : 1-uniform 01010101010101010101010101...

Exemple 3 :

0001101100011011000110...

Exemple 4 : Champernowne sequence(1933)



イロト イポト イヨト イヨト

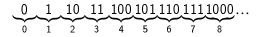
Definition Utilisation Conception

Random sequences : statistical tests

```
Exemple 2 : 1-uniform
01010101010101010101010101...
```

Exemple 3 : 2-uniform 00 01 10 11 00 01 10 11 00 01 10 ...

Exemple 4 : Champernowne sequence(1933)

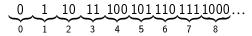


Definition Utilisation Conception

Random sequences : statistical tests

Exemple 3 : 2-uniform 00 01 10 11 00 01 10 11 00 01 10 ...

Exemple 4 : Champernowne sequence(1933)



 ∞ -uniform, but simple to compute \rightarrow limits of *d*-uniformity to define randomness. Many other statistical criteria, but with the same limits.

・ロン ・回 と ・ ヨン ・ ヨン

Definition Utilisation Conception

Random sequences : Kolmogorov complexity

Algorithm : function ϕ from $\{0,1\}^*$ to $\{0,1\}^*$, encoded with $|\phi|$ bits.

Complexity of word x relatively to algo ϕ

 $\mathcal{K}_{\phi}(x) \stackrel{\text{\tiny def}}{=} |\phi| + \inf\{|z|, \phi(z) = x\}$

Kolmogorov complexity of word x

 $K(x) \stackrel{\text{def}}{=} \inf_{\phi} K_{\phi}(x)$

Definition (Random sequence)

A sequence $(x_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}}$ is called random if it exists a constant c such that $\forall n \ge 1$, $K(x_1 \cdots x_n) \ge n - c$.

Random = information can not be compressed, no simple rule of generation (thus "unpredictable")

Random generator : physical methods

Several ways to get random bits :

- dices, coins, cards, loto, marc de café, ...
- quantum phenomena : electronic noise in circuits, radioactivity
- other physical phenomena : thermal noise, radio noise, read/write moves of heads in hard disks ...

Selling randomness :

- RANDOM.ORG : atmospheric noise measured through radio (www.random.org)
- HotBits : measures from a radioactive source (www.fourmilab.ch/hotbits)
- Intel : Intel 810, 810E, 810E2 Chipsets
- The Marsaglia Random Number CDROM : 4.10⁹ random bits mixing several processes (i.cs.hku.hk/~diehard)

Pseudo-random generators : linear congruence

Linear congruence generators

- Integer parameters : m > 0, a > 0, $b \ge 0$, seed $0 \le x_0 < m$.
- Sequence $(u_n)_{n\in\mathbb{N}}\in[0,1]^{\mathbb{N}}$: $x_{n+1}=ax_n+b \mod m$, $u_n=x_n/m$.

▲ Beware of the choice of parameters :

- risk of short periodic behavior
- uniformity sometimes poor
- risk of correlation between successive values

Examples :

- RANDU (IBM 1960) : $x_{n+1} = 65539x_n \mod 2^{31}$, $x_0 \text{ odd}$
- MINSTD called "Minimal Standard" (Park, Miller 1988) : $x_{n+1} = 16807x_n \mod 2^{31} - 1$

Pseudo-random generators : linear congruence

Linear congruence generators

- Integer parameters : m > 0, a > 0, $b \ge 0$, seed $0 \le x_0 < m$.
- Sequence $(u_n)_{n\in\mathbb{N}}\in[0,1]^{\mathbb{N}}$: $x_{n+1}=ax_n+b \mod m$, $u_n=x_n/m$.

▲ Beware of the choice of parameters :

- risk of short periodic behavior
- uniformity sometimes poor
- risk of correlation between successive values

Examples :

- RANDU (IBM 1960) : $x_{n+1} = 65539x_n \mod 2^{31}$, $x_0 \mod \bigcirc$
- MINSTD called "Minimal Standard" (Park, Miller 1988) : $x_{n+1} = 16807x_n \mod 2^{31} - 1 \textcircled{\odot}$

Pseudo-random generators : quadratic congruence

BBS Generator (Blum, Blum, Shub 1986)

- Integer parameters : m = pq, with p, q prime and $\equiv 3 \mod 4$, x_0 prime with m.
- Sequence $(u_n)_{n \in \mathbb{N}} \in \{0, 1\}^{\mathbb{N}} : x_{n+1} = x_n^2 \mod m, u_n = x_n \mod 2.$

Remark : slow for simulation, but strong for cryptography assuming that factorisation is hard.

Example : $n = 7 \times 19 = 133$

 $\begin{array}{cccc} x_0 = 100 & \stackrel{\text{parit}\acute{e}}{\longrightarrow} & u_0 = 0 \\ x_1 = 100^2 \mod 133 = 25 & \stackrel{\text{parit}\acute{e}}{\longrightarrow} & u_1 = 1 \\ x_2 = 25^2 \mod 133 = 93 & \stackrel{\text{parit}\acute{e}}{\longrightarrow} & u_2 = 1 \\ x_3 = 93^2 \mod 133 = 4 & \stackrel{\text{parit}\acute{e}}{\longrightarrow} & u_3 = 0 \end{array}$

(日) (周) (日) (日) (日)

Simulation categories Matthes scheme Usual questions

Different types of computer simulation for performance evaluation

Simulations to analyse the dynamics :

- Equational simulation (recurrences)
- Trace simulation
- Discrete event simulation

Simulations as algorithms to compute some functions :

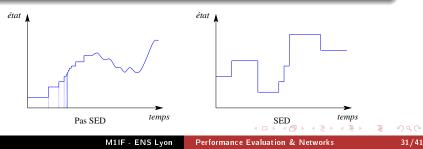
- Monte Carlo simulation (a class of randomized algorithms)
- Sampling using simulation : "to the future" (classical) or "from the past" (coupling from the past)

イロト イポト イヨト イヨト

Discrete event simulation

Definition

- event/transition/jump : state of the system chainging at some instant.
- discrete event system (DES) : dynamics described by a sequence of discrete events (time & space discrete or continuous)..
- discrete event simulation : simulation of a DES.



Discrete event simulation

Algorithm (DES Simulation)

Initialisation {create the 1st event and insert it in the schedule}

2 Repeat until some stopping criteria is satisfied

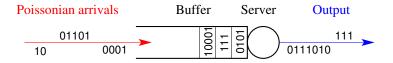
- Move the clock to instant t of next event e;
- Update variables depending on time t ;
- Execute e {action over the state and insertion/suppression of events in the schedule};
- Suppress e from the schedule;
- Sending {compute final statistics and produce final report}

Schedule : dynamic set of incoming next events

イロト イポト イヨト イヨト

Simulation categories Matthes scheme Usual questions

Example : a communication channel in isolation (I)



Model of the channel (continuous time and discrete data) :

- Input traffic : packets of random length (with uniform law over $\{1, \ldots, M\}$) with T_n arrival date of *n*-th packet following a Poisson process of intensity λ , i.e. $T_0 = 0$ and inter-arrivals $(T_n T_{n-1})_{n \in \mathbb{N}^*}$ i.i.d. of law $Exp(\lambda)$.
- Server : FIFO with rate = 1 if there is work (transmission time of a packet = its length).
- Queue : storage with ∞ memory.

Simulation categories Matthes scheme Usual questions

Example : a communication channel in isolation (II)

Variable(s) for system states? Simulation algo?

・ロト ・ 同ト ・ ヨト ・ ヨト

Example : a communication channel in isolation (II)

System state : X(t) = nb of packets waiting or being transmitted at time t (state space : \mathbb{N}).

Two types of events ("sources")	Active source if
α : packet arrival	always
$oldsymbol{eta}$: transmission end of a packet	X(t) > 0

Residual times : $Y_{\alpha}(t)$ (resp. $Y_{\beta}(t)$) time from t to the first type α event (resp. β). **Set of active sources for state** $i : Active(i) \subseteq \{\alpha, \beta\}$.

(日) (周) (日) (日) (日)

Simulation categories Matthes scheme Usual questions

Example : a communication channel in isolation (III)

Algorithm (Simulation of $M(\lambda)/D(\overline{1})/1$ queue)

1
$$t \leftarrow 0$$
; $X(t) \leftarrow 0$; $Y_{\alpha}(t) \leftarrow -\frac{1}{\lambda} \ln(\text{Random})$;

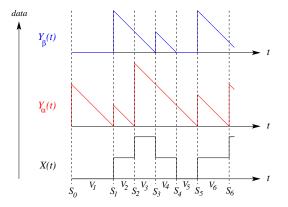
$$V \leftarrow \min_{\gamma \in Active(X(t))} Y_{\gamma}(t); \ \overline{\gamma} \leftarrow \arg\min_{\gamma \in Active(X(t))} Y_{\gamma}(t)$$

If
$$\overline{\gamma} = \alpha$$
,
$$\begin{bmatrix} X(t+V) \leftarrow X(t) + 1; \\ Y_{\alpha}(t+V) \leftarrow -\frac{1}{\lambda} \ln(\text{Random}); \\ \text{If } X(t+V) > 1, \text{ then } Y_{\beta}(t+V) \leftarrow Y_{\beta}(t) - V; \\ \text{Else } Y_{\beta}(t+V) \leftarrow \lceil M \times \text{Random} \rceil; \\ \end{bmatrix}$$
If $\overline{\gamma} = \beta$,
$$\begin{bmatrix} X(t+V) \leftarrow X(t) - 1; \\ Y_{\alpha}(t+V) \leftarrow Y_{\alpha}(t) - V; \\ \text{If } X(t+V) > 0, Y_{\beta}(t+V) \leftarrow \lceil M \times \text{Random} \rceil; \\ \end{bmatrix}$$

• $t \leftarrow t + V$; Goto 2;

Simulation Simulation catego Random generators Matthes scheme Discrete event simulation Usual questions

Example : a communication channel in isolation (III)



• $V_n \in \mathbb{R}_+$, $n \ge 1$, consecutive values of V: delay between each state transition ("jump") $\rightarrow S_n = \sum_{i=1}^n V_i$ date of *n*-th jump.

・ロト ・回ト ・ヨト ・ヨト

Matthes scheme : ingredients

- E : countable set of system states, X(t) state at time t.
- *S* : set of sources (inducing state transitions).
- State $x \in E \rightarrow \text{active sources} : Active(x) \subseteq S$.
- Source α ∈ S → Y_α(t) delay from t to next event α.
 Computed from :
 - F_{α} cumulative distrib fct for the "size" of event α .
 - $C(\alpha, x)$ "decrease" speed of $Y_{\alpha}(t)$ when state is x.
- Jump : when $Y_{\alpha}(t)$ reaches 0, α occurs and system jumps from current state x to new state y with proba $p(\alpha, x, y)$.

Simulation categories Matthes scheme Usual questions

Matthes scheme : simulation algo

Algorithm (Simulation "à la Matthes") $t \leftarrow 0 ; X(t) \leftarrow x_0 ; Y_{\alpha}(t) \leftarrow y_{0,\alpha}, \forall \alpha \in Active(x_0) ;$ Oraw x with law $(p(\overline{\alpha}, X(t), e))_{e\in F}$; $X(t+V) \leftarrow x;$ $Y_{\alpha}(t+V) \leftarrow Y_{\alpha}(t) - V \times C(\alpha, X(t)),$ $\forall \alpha \in Active(x) \cap Active(X(t)) \setminus \{\overline{\alpha}\}$; $Y_{\alpha}(t+V) \leftarrow F_{\alpha}^{-1}(\text{Random}), \forall \alpha \in Active(x) \setminus Active(X(t));$ $Y_{\overline{\alpha}}(t+V) \leftarrow F_{\overline{\alpha}}^{-1}(\text{Random}), \text{ si } \overline{\alpha} \in Active(x);$ • $t \leftarrow t + V$: Goto 2:

Quantify/qualify transitory/asymptotic behaviour

Stationarity / Stability :

- For deterministic system $(F_{\alpha} = \mathbb{1}_{[T_{\alpha}, +\infty[}), \text{ si } E \text{ est } \infty, \text{ Does } X(t)$ remain if a finite subset of E when $t \to +\infty$?
- For probabilistic system (F_{α} random), which conditions make X(t) tends to a limit r.v. X_{∞} ?

Characterization of processes :

- For deterministic system, X(t) becomes periodic?
- For probabilistic system, which conditions make X(t) markovian? and make this Markov chain positive recurrent (probabilistic analog of periodicity)?

Characterization of laws : what are the laws of X(t) (transitory law) and X_{∞} (asymptotic/stationary law)?

(日) (周) (日) (日) (日)

Simulation in pratice

Use of a simulator \rightarrow estimate behaviour/laws via observations and statistics

- ▲ Choice of initial conditions?
- ▲ Stopping criteria for each simulation?
- ▲ Stopping criteria over number of simulation runs?
- ▲ Compromise between simulator sharpness / simulation complexity.

to be continued ...

イロト イポト イヨト イヨト

э